
Challenging Malicious Inputs with
Fault Tolerance Techniques

Bruno Luiz

Agenda

• Threats
• Fault Tolerance
• Fault Injection for Fault Tolerance

Assessment
• Basic and classic techniques
• Decision Mechanisms
• Implementation Methodology

Threats

• Fault is the identifed or hypothesized
cause of an error

• An error is part of the system state that is
liable to lead to a failure

• A failure occurs when the service
delivered by the system deviates from the
specified service, otherwise termed an
incorrect result

fault error failure faultactivation propagation causation

The Classes of Faults

Tree Representation of Faults

Objective
• Malicious faults are introduced during either system

development with the intent to cause harm to the
system
- They are grouped into two classes

• Potentially harmful components
- Trojan horses
- Trapdoors
- Logic or Timing bombs

• Deliberately introduced software or hardware
- Vulnerabilities or human-made faults

• Non-malicious faults are introduced without
malicious objectives
- Vulnerabilities

Malicious Logic Faults
• That encompass development faults

- Logic Bomb
- Trojan horse
- Trapdoor

• Operational faults
- Virus
- Worm
- Zombie

Intrusion Attempts

• Malicious Inputs
- To disrupt or halt service
- To access confidential information
- To improperly modify the system

Application Software Layer

Operating/Database System

Hardware

Vulnerabilities

• Development or operational faults
• Common feature of interaction faults
• Malicious or non-malicious faults
• Can be external fault that exploit them

Fault Tolerance

“The goal of fault tolerance methods is to
include safety features in the software
design or Source Code to ensure that the
software will respond correctly to input
data errors and prevent output and control
errors”

Software faults are what we
commonly call "bugs"

Fault Tolerance
• Can, in principle, be applied at any level in a

software system
- Procedure
- Process
- Full application program
- The whole system including the operating

system
• Economical and effective means to increase the

level of fault tolerance in application
- Watchd
- libft
- REPL

Error Detection and Correction
• Verification tests capable of detection of

the errors
- Replication
- Temporal
- Consistency
- Diagnosis

• Once the error has been detected, the next
step will be your elimination
- Backward Recovery
- Forward Recovery

Backward Recovery

Checkpoint Restore
checkpoint

Recovery

point

Fault

Tolerance

Fault detection

Fault
detected

Rollback

Forward Recovery

Fault detection and handling

Recovery point
Fault tolerated

Redundancy
• Types of Redundancy for Software Fault

Tolerance
- Software Redundancy
- Information or Data Redundancy
- Temporal Redundancy

• The selection of which type of redundancy to
use is dependent on the...
- Application’s requirements
- Resources
- Techniques

Robust Software
• Defined as “the extent to which software can

continue to operate correctly despite the
introduction of invalid inputs”
- Out of range inputs
- Inputs of the wrong type
- Inputs in the wrong format

• Self-checking software features
- Testing the input data
- Testing the control sequences
- Testing the function of the process

Robust software operation
Valid
Input

Use last
acceptable

value

Use
Predefined

value

Request
new input

or or

Raise
Exception

flag

Continue
Software
operation

Handle exceptions

False

True

Result

Robust software

Diversity

• Since redundancy alone is not sufficient to
help detect and tolerate software design
faults

• This diversity can be applied at several
levels and in several forms

• Forms of diversity
- Design diversity
- Data diversity
- Temporal diversity

Basic Design Diversity

Input

Variant 2 Variant 3Variant 1

Decider
Incorrect

Correct

Data Diversity
• To avoid anomalous areas in the input data

space that cause faults
• Use data re-expression algorithms (DRAs) to

obtain their input data
• Depends on the performance of the re-

expression algorithm used
- Input Data Re-Expression
- Input Re-Expression with Post-Execution

Adjustment
- Re-Expression via Decomposition and

Recombination

Overview of Data Re-Expression

• A re-expression algorithm, R, transforms
the original input x to produce the new
input, y = R(x)

• The input y may either approximate x or
contain x’s information in a different form

Execute
P

Execute
P

Re-expression
y = R(x)

x P(x)

P(y)

Data Re-Expression With
Postexecution Adjustment

• A correction, A, is performed on P(y) to
undo the distortion produced by the re-
expression algorithm, R

• This approach allows major changes to
the inputs

Execute
P

Execute
P

Re-expression
y = R(x)

x P(x)

Adjust for
re-expression A(P(y))

Data Re-Expression via
Decomposition and Recombination
• An input x is decomposed into a related

set of inputs
• Results are then recombined

Execute
P

P(xn)
Decompose
x → x1, ..., xn

x P(x)

Recombine
P(xi)

P(x1)

P(x2)
...

F(P(xi))

Fault Injection for Fault Tolerance
Assessment

• Injecting faults enables a performance
estimate for the fault tolerance
mechanisms
- Fuzzing
• Latency (the time from fault

occurrence to error manifestation at the
observation point)
- Exploit vulnerability
• Coverage (faults handled properly)

Fault Injection for Fault Tolerance
Assessment

• Advantages of Fault Injection using
fuzzing
- Accelerating the failure rate
- Able to better understand the behavior
of that mechanism

• Error propagation
• Output response characteristics

Fault Injection for Fault Tolerance
Assessment

• Advantages of Fault Injection
using exploration

- Saving and restoring the
execution context
- Integrity of the data
during execution
- Test backward
recovery

Memory

Error

3

Normal

2

1

4

Main
Context

Cache

Programming Techniques

• Assertions
• Checkpointing
• Atomic actions

Assertions

• Are a fairly common means of program
validation and error detection

• In essence, they check whether a current
program state to determine if it is corrupt
by testing for out-of-range variable values

• Simplest form

if not assertion then action

Assertions

• Several modern programming languages
include an assertion statement

• When an error does occur it is detected
immediately and directly, rather than later
through its often obscure side-effects

int *ptr = malloc(sizeof(int) * 10);
assert(ptr != NULL);
// use ptr

Assertions

• Simplify debugging
• Checked at runtime

int total = countNumberOfUsers();
if (total % 2 == 0)
{

// total is even
} else
{

// total is odd
assert(total % 2 == 1);

}

Checkpointing
• Is used in error recovery, which we recall

restores a previously saved state of the system
when a failure is detected

• Saves a complete copy of the state when a
recovery point is established

• The information saved by checkpoints includes
- Values of variables in the process
- Environment
- Control information
- Register values

Checkpointing

• Complex mechanism of restoring the stack
and register state of the checkpointed
process

• Save the state of data in memory, the
processor context (register and instruction
pointer) and the stack
- User-level
- Kernel-level

Checkpointing

• Methods
- Internal

• Only be used by the process being
checkpointed

• Insert some code into the process to be
checkpointed
- External

• May be used by any process
• Examine the information published by the

kernel through the /proc

Checkpointing
• Types

- Static
• Gathering kernel state information
• Information can be acquired more or less directly

from the kernel
- Dynamic

• Track all operations by a process
• Replace C library functions with wrappers

• Existing systems
- libckpt
- condor
- hector
- icee
- EPCKPT
- CHPOX

Atomic Actions

• Are used for error recovery
• An atomic action is an action that is

- Indivisible
- Serializable
- Recoverable

Basic and Classic Techniques

• Recovery Blocks
• N-Version Programming
• Retry Blocks
• N-Copy Programming

Recovery Blocks

• Dynamic technique
• Uses an AT and backward recovery
• RcB scheme

- Executive
- Acceptance test
- Primary and alternate blocks (variants)
- Watchdog timer (WDT)

Recovery Block Operation

ensure Acceptace Test
by Primary Alternate
else by Alternate 2
else by Alternate 3
...
else by Alternate n
else failure exception

• General Syntax

Recovery Block Operation
RcB entry

Establish
checkpoint

Execute
alternate

Discard
checkpoint

New
alternate exists
and deadline
not expired?

Restore
checkpoint

Evaluate
AT

RcB

Yes No

Exception signals

Fail

Pass

Failure exceptionRcB exit

N-Version Programming

• Static technique
• Use a decision mechanism (DM) and

forward recovery
• NVP technique consists

- Executive
- n variants
- DM

N-Version Programming Operation

• General Syntax

Run Version 1, Version 2, ..., Version n
if (Decision Mechanism (Result 1, Result 2, ..., Result n))

return Result
else failure exception

N-Version Programming Operation
NVP entry NVP

Distribute
inputs

Version 2 Version nVersion 1 ...

Gather
results

DM
Exception raised

Output selected

Failure exceptionNVP exit

Retry Blocks

• RtB technique is the data diverse
complement of the recovery block (RcB)
scheme

• RtB technique consists
- Executive
- AT
- DRA
- WDT
- Primary and backup algorithms

Retry Block Operation

Ensure Acceptace Test
by Primary Algorithm(Original Input)
else by Primary Algorithm(Re-expressed Input)
else by Primary Algorithm(Re-expressed Input)
...
... [Deadline Expires]
else by Backup Algorithm(Original Input)
else failure exception

Retry Block Operation
RtB entry

Establish
checkpoint

Execute
algorithm

Discard
checkpoint

New
DRA exists

and deadline not
expired?

Restore
checkpoint

Evaluate
AT

RtB

Yes No

Exception signals

Fail

Pass

Failure exception

Invoke
backup

Evaluate
AT for
backup

Pass

Fail

RtB exit

N-Copy Programming

• NCP is the data diverse complement of N-
version programming (NVP)

• Copies execute in parallel using the re-
expressed data as input

• NCP technique consists
- Executive
- 1 to n DRA
- n copies of the program or function
- DM

N-Copy Programming Operation

• General Syntax

run DRA 1, DRA 2, ..., DRA n
Run Copy 1(result of DRA 1),

Copy 2(result of DRA 2), ...,
Copy n(result of DRA n)

if (Decision Mechanism (Result 1, Result 2, ...,
Result n))

return Result
else failure exception

N-Copy Programming Operation
NCP entry NCP

Distribute
inputs

DRA 2 DRA nDRA 1 ...

Gather
results

DM
Exception raised

Output selected

Copy 1 Copy nCopy 2 ...

NVP exit Failure exception

Decision Mechanisms

• Adjudicators determine if a “correct” result
is produced by a technique

• Adjudicator would run its decision-making
algorithm on the result

• Adjudicators generally come in two flavors
- Voters
- ATs

Adjudicator

• Acceptance Tests (ATs)
- Reasonableness tests
- Computer run-time tests

Acceptance Tests

• Basic approach to self-checking software

Receive variant result

Apply AT

Set pass/fail indicator (TRUE/FALSE)

Return status

Variant input General AT

Reasonableness Tests

• Determine if the state of an object in the
system is reasonable
- Precomputed ranges
- Expected sequences of program states
- Other expected relationships

Range Bounds AT

• General Syntax

BoundsAT (input, Min, Max, Status)

Set Status = NIL
Receive algorithm result (input)
Retrieve bounds (Min < and < Max)

if input is whitin bounds (i.e., Min < input < Max)
then Set Status = TRUE
else Set Status = FALSE (Exception)
End

Return Status

Range Bounds AT Operation
Variant input

Set status = NIL

Receive variant
result, r

Min < r < Max
?

Set status =
FALSESet status = TRUE

Return status

Bounds AT

No

Yes

Computer Run-Time Tests

• Test only for anomalous states
• Detect anomalous states such as

- Divide-by-zero
- Overflow
- Underflow
- Undefined operation code
- Write-protection violations

Recovering Exploration

• The recovering exploration technique
uses RcB to accomplish fault tolerance.

• When a checkpoint is established the
values of data in memory, the processor
context (register and instruction pointer)
and the stack are saved.

• Time-out via the watchdog occurs, resets
the watchdog time, and restores the
checkpoint

Recovering Exploration
Malicious Input

Program

RcB

Malicious Code

Checkpoint
WDT

Vulnerability

Anti-Fuzzing

• Technique to prevent hacker discover
zero day vulnerabilities in vendors

• The inputs are distributed for the modules
and in case the results are distinct a error
is detected.

• Use N-Version Programming in which
each version is an module.

Anti-Fuzzing
Malicious Input

Version 1:
negative

Version 2:
range

Version 3:
anomalies

Decision Mechanism

NVPDistribute
inputs

Program
Vulnerability

Implementation Methodology
1. It is defined an initial architecture and a

technique for your implementation
2. They identify the classes of susceptible to

flaws to happen, and that should be
tolerated

3. They incorporate the mechanisms of
detection of errors, necessary to the
attendance of all the classes of important
flaws

4. Recovery algorithms are defined that will be
worked after the greeting of the originating
from sign the detection mechanisms

Questions?

Bruno Luiz
brunolcr@yahoo.com.br

