Next-Generation Debuggers

For Reverse Engineenng

The ERESI team
eresi@asgardlabs.org

Black Hat Briefings

The ERESI project

* Started in 2001 with the ELF shell
Developed at LSE (EPITA security laboratory)

Contains more than 10 components

Featured in 2 articles in Phrack Magazine:
— The Cerberus ELF Interface (2003)
— Embedded ELF Debugging (2005)

Black Hat Briefings

Limitations of existing UNIX

debugging framework

GDB : Use OS-level debugging API (ptrace) ->
does not work if ptrace Is disabled or absent

¢ Very sensitive to variation of the environment (ex:

* ET_DYN linking of hardened gentoo)

* Strace / Ltrace : use ptrace as well. Very few
Interaction (command-line parameters)

Black Hat Briefings

= Limitations of existing frameworks

"None of these frameworks rely on a real reverse
. [] L]
engineering language

Black Hat Briefings

The ERESI team

Started with a single person in 2001 (The ELF
shell crew). Remained as it during 3 years.

¢ Another person developed libasm (disassembling
library) since 2002

A third person developed libdump (the network
accessibility library) in 2004-2005

Since mid-2006 : community project (6 persons)

Black Hat Briefings

The modern ERESI project

elfsh (and libelfsh): The ELF shell

e2dbg (and libe2dbg): The Embedded ELF
= debugger

* etrace : The Embedded tracer

Ibrevm : the language interpreter
ibmjollnir : fingerprinting & graphs library
Ibaspect : Aspect oriented library

Black Hat Briefings

Ibasm : the disassembling library
ibedfmt : the ERESI debug format library

Iballocproxy : allocation proxying library
ibui : The user interface (readline-based)

Black Hat Briefings

Internal components

etrace
The ELF tracer

1
J

~xternal components

Derived interpret Ersﬁ

[

Core interpreter

Reverse engineering libra riesﬁ

libemalloc
Independant allocator proxy

ERESI contributions (1)

Can debug hardened systems (does not need
ptrace) : PaX/grsec compatible

* \ery effective analysis : improve the performance
of fuzzing and heavy-weight debugging (no
context switching between the debugger and the
debuggee : the dbgvm resides in the debuggee)

Black Hat Briefings

ERESI contributions (2)

A reflective framework : possibility to change part
of it In runtime without recompilation

The first real reverse engineering language !
=l

— hash tables

— regular expressions

— loops, conditionals, variables

— The complete ELF format objects accessible from the
language

Black Hat Briefings

= The ERESI language : example 1
load /usr/bin/ssh

set $entnbr 1.sht[.dynsym].size
div $entnbr 1.sht[.dynsym].entsize

print Third loop until $entnbr :
foreach $idx of 0 until $entnbr

print Symbol $idx is 1.dynsym[$idx].name
forend

unload /usr/bin/ssh

., Black Hat Briefings

= The ERESI language : example 2

add $hash[hname] Intel

add $hash[hname] Alpha

add $hash[hname] Sparc32

add $hash[hname] Mips

add $hash[hname] Sparc64

add $hash[hname] AMD

add $hash[hname] Pa-risc

foreach $elem of hname matching Sparc
print Regex Matched $elem

endfor

Black Hat Briefings

*- The ERESI language : example 3

type archtypes = elm:string[55]

Inform archtypes elfsh _arch type

type archaddr = elm:long[55]

Inform archaddr elfsh _arch type

print Now print Strings

print 107.archtypeg elfsh _arch type].elm[0]
print 107.archtypegq elfsh _arch type].elm[1]
print Now print addresses

print 107.archaddr[elfsh arch type].elm[O]
print 107.archaddr[elfsh_arch type].elm[1]

Note: elfsh_arch_typeisthe symbol of an array in elfsh. In that example, elfsh itself is analysed

Black Hat Briefings

e2dbg : the Embedded ELF
debugger

Does not use ptrace. Does not have to use any
OS level debug API. Evades PaX and grsecurity.

¢ Proof of concept developed on Linux / x86 .

* Scriptable using the ERESI language
* Support debugging of multithreads

* No need of ANY kernel level code (can execute in
hostile environment)

Black Hat Briefings

ERES] interpreter = Embedded debugger

= + Unintrusive heap Hooked process
+ analysis code

+ aspect library
+ debug format handling

- Target abstraction
- Communication abstraction

- Interface abstraction

—* Signals
E» Interprocess communication

» Intraprocess communication Shared signal handlers

Black Hat Briefings

e2dbg : features

Classical features:

— breakpoints (using processor opcode or function
redirection)

— stepping (using sigaction() syscall)

* Allocation proxying
— keep stack and heap unintrusiveness
Support for multithreading

Black Hat Briefings

Allocation proxying

* We manage two different heap allocator in a
o :
single process:
= int hook_malloc(int sz)

{
if (debugger)
return (aproxy_malloc(sz));
return (orig_malloc(sz))

Black Hat Briefings

Handling of debug format in ERESI

Black Hat Briefings

Debugging format

"» Describe each element of a program

— Give names and position of:
* Variables
* Functions
* Files

— Store program types dependences between them

Black Hat Briefings

Debugging format - issues

* Distinction of debugging format
— stabs, dwarf, stabs+, dwarf2, gdb, vms ...
— Different ways to parse, read, store ...

2
=* For example with stabs and dwarf2
— Stabs does not contain any position reference
* You store the whole parsing tree

— Dwarf2 use read pattern apply directly on data
* You cannot store everything (too big)

Black Hat Briefings

Uniform debugging format

"¢ Parsing
» — S0 we can read the debugging format
* Transforming
s — Wetransform it on a uniform representation
— Keep only useful information

= ¢ (Cleaning

— We keep only uniform debugging format
= New debugging format

— We change only backward part

* Register types on ERESI type engine

Black Hat Briefings

Embedded ELF tracer

" Tracer using ELFsh framework
" e Tracing internal and external calls

2* Dynamic and supports multiple architecture
= - [t does not use statically stored function prototypes

- — Use gcc to reduce architecture dependence

2 * Work with and without debugging format
* Recognize string, pointers and value

., Black Hat Briefings

etrace
| The ELF tracer

with without

each funetion

Debug informati onslﬁ

N L

Architecture dependent

Processing function arguments

7

A"

Generated C file | = = = = -[>-

Generate binary module

I

¥

Architecture dependent

ET_REL Injection

| EFluggakle redirecticon

internal external

each function

- _v routine |

Architecture dependent

Redirect target function

—1> condition
- == 4> lop

Embedded ELF tracer

"¢ Trace backend
— Analyze target function
— Create proxy functions

= Embedded tracer
— Inject proxy functions in the binary
— Redirect calls into our proxy functions
— Create a new binary

* Automatic using the ELF tracer

Black Hat Briefings

Embedded ELF trace - script

#!/ustr/local/bin/elfsh32

load ./test

fraces add main

traces create critical

traces add crypt critical

traces create mainnodes
traces add firstfunc mainnodes
traces add testcrypt mainnodes
save test2

Black Hat Briefings

Embedded ELF trace - output

"+ main()
BEFORE !
+ firstfunc(int num: 0x3, *char value: *0x8048648 "this is the text")
arguments: num = 3/ value = this is the text (0x8048648)
m +testerypt()
+ crypt(*0x804860d "password", *0x8048608 "salt")
- crypt = b7174120
- testerypt = b7{74120
- firstfunc = 1
OK!
AFTER
-main=0

Black Hat Briefings

Etrace - Processing function

arguments

With debugging information

— Extract arguments information
* Size 1 Theeét{gct?acer
* names |

: with without
o type nameS :aac:h function |Debug infarmatiansﬁ
[}

With architecture dependent — —

Architecture dependent

a rg U m ent CO U ntl n g Processing function arguments
— Backward analysis
— Forward analysis

Black Hat Briefings

Etrace - Generate binary module

Generate a .c file
— Call tree (padding)

— Dynamic check pointers,
strings or value v

=
= Benefits (e - - D

— Architecture independent Generate binary module

— New feature implementation
— Less bugs
— Use ELFsh framework

Black Hat Briefings

Libelfsh - ET_REL injection

* ET_REL injection principle
— Add a binary module directly on target
binary

s Merge symbols and sections list

= Section injection ey it orr

. Architecture dependent
- COde SeCtlonS ET_REL Injection
* Injected before .interp -
— Data sections
* |njected after .bss

* Relocation in two steps

Ay
'

Black Hat Briefings

Libelfsh - Redirect target function

* |nternal function o

— CFLOW technique [nary manputston prary

Architecture dependent

9 External fu nCtion ET_REL Injection

2
s — ALTPLT technique

* (Custom redirection
— Vector benefit

— Your own redirection
mechanism

Program analysis

Black Hat Briefings

A Graph Analyzer

"o Graph analyzers
= - Identify blocks and functions
_ — ldentify links (calls and jumps)
= — Build a graph with this info
"¢ Control Flow Graphs (CFGs)
— Inter-blocks CFGs vs. Interprocedural CFGs
— Main instrument to Control Flow analysis

Black Hat Briefings

A Graph Analyzer

" Control Flow Analysis

— Essential to some kinds of further analysis and to
. optimization
= - Gives information about properties such as

* Reachability
* Dominance

Black Hat Briefings

A Graph Analyzer - Libasm

" Libasm
— Lowest layer of this application

= — Multi-architecture disassembling library
- * Intel IA-32

* SPARC V9

* |n the near future, MIPS

— Unified type system

Black Hat Briefings

A Graph Analyzer - Libasm

Type Description
IMPBRANCH Imperative branch (jump)
CONDBRANCH Conditional branch
CALLPROC Call to a procedure
RETPROC Return from a procedure
ARITH Arithmetic or logic operations
LOAD Memory data load
STORE Memory data store
ARCH Architecture-dependent instruction
FLAG Flag-modifier instruction
INT Interrupt or call-gate instruction
ASSIGN Assignment instruction
TEST Comparison or test instruction
NONE Instruction that doesn't fit any of the above

Black Hat Briefings

A Graph Analyzer - Libasm

" The unified instruction type system

— Works with non-mutually exclusive types
= — Provides means to “blindly” analyze an instruction
® = Eg. Control Flow analysis!

Black Hat Briefings

A Graph Analyzer - Libasm

" Libasm vectors
— Storage of pointers to opcode handling functions
= — 4 dimensions: 1 for machine info, 3 for opcode info

® — Runtime dumping and replacing of vectors
* Built-in language constructs
* Easy-made opcode tracer!

Black Hat Briefings

A Graph Analyzer - libmjolinir

" Libmijollnir

— Upper-layer component
= — Code fingerprinting and program analysis
_" CFG construction

— Libmjollnir treats both: blocks and functions
— Separate representations (structures)

Black Hat Briefings

A Graph Analyzer - libmjolinir

. n
* Containers

— Generic structures to encapsulate blocks and
functions

= — Have linking (input and output links) information

— Have a pointer to data and type information to
interpret this data accordingly

Black Hat Briefings

A Graph Analyzer - libmjolinir

. n
* Containers

— Allow for more abstract graph analysis (analyzing a
. graph of containers)

= - Inthe future, may also store data nodes (Data Flow
analysis)
— Also for the future, containers of containers
* Even higher abstraction of links and relationships

Black Hat Briefings

Questions ?

* Thank you for your attention

* |f you are interested in joining us, come to talk
after the conference.

Black Hat Briefings

